de la tangente a la curva en el punto de abscisa 2 es, por definición, f '(2), luego la ecuación de la recta es de la forma punto, para ello consideraremos h>0 Si h > 0, lógicamente (x1 + h) = 1 + h > 1 y en este caso estamos muy cerca del punto azul del figura pero a la derecha, por lo que la función es la línea recta roja f(x) = x. Por tanto: f (1) = 1 y f (1+h) = 1 + h «límite por la derecha» e indica que la tangente a la derecha de 1 tiene por pendiente 1. 2º Lo que pasa a la izquierda de este punto, para ello consideraremos h<0 Si h < 0, lógicamente (x1 + h) = caso estamos muy cerca del punto azul del figura pero a la izquierda, (por lo que la función es la línea azul f(x) = x2. Por tanto: f (1) = 1 y f (1+h) = (1 + h)2 = 1 + 2h + h2Este límite es el «límite por la izquierda» e indica que la tangente a la izquierda de 1 tiene por pendiente 2. Al no coincidir los límites a derecha e izquierda de 1, no existe tal límite y, por tanto, la función f(x) no es derivable en x = 1. b) Derivabilidad en x = 0.En este caso no es necesario considerar h > 0 y h < 0 ya que en las proximidades de cero
pendiente de la tangente es cero (paralela al eje de abcisas).
¿Cuándo hay que considerar límites a derecha e izquierda al calcular la derivada de una función en un punto?Si al dibujar la curva se observa que en el punto considerado ésta cambia bruscamente de dirección, es necesario considerar límites a derecha e izquierda, puesto que, en este caso, la tangente no se comporta de igual modo y se «quiebra». Consecuencias de la definición de derivada en un punto
Puede ocurrir, no obstante, que existiendo las derivadas a derecha e izquierda éstas sean distintas. En este caso no existe la tangente en (x0, f(x0 )), sino dos semirrectas, cada una tangente a uno de los arcos en que el citado punto divide a la curva. Los puntos en que esto ocurre se llaman puntos angulosos. Los puntos x1 de la primera figura y x0 de la segunda que hemos estudiado son puntos angulosos: la curva cambia bruscamente de dirección en e llos. La función correspondiente no es derivable en las abscisas de dichos puntos.No es difícil, consecuentemente, imaginar la gráfica de una función que no sea derivable en muchos e, incluso, infinitos puntos.Tangente a una curva en un puntoEl concepto de derivada facilita la definición de tangente a una curva en un punto como el límite de una secante que pasa por él y por otro punto cualquiera de la curva cuando éste último, recorriendo la curva, tiende a coincidir con el primero.Propiedad
multiplicamos y dividimos por h
Cálculo diferencialEl Cálculo Diferencial, es una parte importante del análisis matemático y dentro del mismo del cálculo infinitesimal. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial. En el estudio del cambio de una función cuando cambian sus variables independientes es de especial interés para el cálculo diferencial el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra. Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una funcióncambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de f(x) en cada punto x. Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden ser utilizadas para conocer la concavidad de una función, sus intervalos de crecimiento, sus máximos y mínimos. |
JESSICA MARTINEZ.... |
No hay comentarios:
Publicar un comentario